Stereocontrolled Formation of Polysubstituted Tetrahydrofurans by Debenzylating Cycloetherification

Henrietta Dehmlow *, Johann Mulzer, Carsten Seilz, Achim R. Strecker, Andreas Kohlmann

Institut für Organische Chemie der Freien Universität Berlin Takustrasse 3, W-1000 Berlin 33, FRG

Keywords. tetrahydrofuran; neighboring group participation of benzyl ethers; Mitsunobu conditions; small rngs; mesylates.

Abstract: Benzyl ethers with S_N2 active sites in γ -position undergo spontaneous regio- and stereocontrolled tetrahydrofuran cyclization with concomitant debenzylation even under mildly acidic or neutral conditions.

Benzyl ethers are considered to be stable O-protective groups over a wide pH-range, even towards mineral acids at room temperature. In the course of some natural product syntheses we observed however, that spontaneous debenzylation occurs under mildly acidic or even neutral conditions if a S_N2 type leaving group is present in γ -position to the benzyl ether. This is indicated by pathway **b** in Scheme 1, which competes with the direct S_N2 attack (pathway **a**). Apart from the familiar iodoetherification¹ (mercuricyclisation, heteroselenylation etc.) of γ -hydroxy- or γ -benzyloxy-alkenes a similar dealkylative tetrahydrofuran cyclization has only been observed for solvolytic nucleophilic substitution reactions² of 4-methoxy-butyl-1-O-tosylates, reductions with lithium aluminium hydride³ of 4-methoxy-pentyl- and 5-methoxy-pentyl-1-O-brosylates and for reactions of 4-alkoxyalcohols with thionylchloride⁴ in low yields.

Scheme 1.

For the preparation of some intermediates in the synthesis of the glucosidase inhibitors castanospermine⁵ and N-acetyl-4-deoxy-mannosamine⁶ the Mitsunobu reaction⁷ was chosen to introduce the N-function. Treating 1 (Entry 1) with Ph₃P, phthalimide and diethylazodicarboxylate (DEAD) for 16 h in THF gave a mixture of the acyclic product 3 and tetrahydrofuran 2 in 45 and 24% yield, respectively. The stereochemistry of 2 was determined by NOE difference spectroscopy clearly showing a 2,4,5 cis relationship of the hydrogen atoms. Similar treatment of 4 (Entry 2) gave 43.3% of the expected product 6, 23.8% of the dehydrated substance 7

```
Table I.
```

Entry	Educt	Products	Conditions
1	OBn OBn RO OBn OH R = tBuPh ₂ Si 1	BnO, OBn OBn OBn RO, OBn + RO <u>i</u> OBn NPhth 2 (24%) 3 (45%)	1.2 eq PPh ₃ ,1 2 eq Phth, 1.2 eq DEAD, THF, -20°C → rt.
2	OBn OBn BnO	$\begin{array}{c} OBn & OBn & OBn & OBn \\ BnOCH_{2}^{(1)} & O & H \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\$	2 eq PPh ₃ , 2 eq Phth, THF, 2 eq DEAD,-20°C → rt
3	OBn OBn TrOCH ₂ OBn 8	$\begin{array}{c} OBn & OBn \\ TrOCH_2 & OBn \\ \hline 9 (20\%) \end{array} \begin{array}{c} TrOCH_2 & O \\ + \\ BnO \\ \hline 0Bn \\ \hline $	1.25 eq m-CPBA, CH₂Cl₂, rt → Δ.
4	OBn OBn BnO	OBn BnOCH2 ^{••} CH ₂ NHAc 12 (67%)	acetic acid, 1h, ∆.
5	OBn OBn HOCH ₂ OBn OH 1 3	$BnO^{*} \xrightarrow{1} \begin{array}{c} O \\ A \\ OBn \end{array} \xrightarrow{1} \begin{array}{c} R' \\ Bn \\ OBn \end{array} \xrightarrow{1} \begin{array}{c} OBn \\ R' \\ R$	2.7 eq MsCl, 2.9 eq DMAP, pyridine, 0°C → rt.
6	$ \begin{array}{c} \text{BnO} \text{CH}_2\text{OMs} \\ \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} \\ \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} \\ \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} \\ \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} \\ \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} \\ \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} & \overset{\bullet}{} \\ \overset{\bullet}{} & \overset{\bullet}{}$	0 CH ₃ CH ₃	a) MeOH, p-TsOH; b) CH ₂ Cl ₂ , DMAP, p-TsOH.
7	OBn OBn MsOCH ₂ 17	BnQ 0 18 (78%)	NaCN, EtOH / H ₂ O (vv 9/1), Δ.

and 14.3% of 2,3-cis-substituted tetrahydrofuran 5. The simultaneous formation of benzylphthalimide (=NuBn) in 16% yield further supports the validity of Scheme 1

Tetrahydrofuran cyclizations were observed also if the benzyloxy group was in γ -position to an epoxide or aziridine ring. Oxidation of alkene 8 (Entry 3) with m-chloroperbenzoic acid (m-CPBA) gave a mixture of the epoxide epimers 9 and hydroxymethyl compounds 10a/b (ratio 3:1) in 20 and 43% yield, respectively. 9 is an intermediate in the formation of 10a/b from 8. This can be shown by isolating and converting 9 into 10a/b under the epoxidation conditions applied. Even if buffered systems or other epoxidation conditions⁸ are used, 10a/b are still the main products. Heating the aziridine derivative 11^{6c} (Entry 4) in anhydrous acetic acid to 100°C for 1 h led to the N-acetyl protected all-cis substituted tetrahydrofuran 12 in 67% yield. Notably no tetrahydropyran isomers of 10a/b and 12 were isolated indicating that the S_N2-reaction occurs at the secondary C-atom of the small ring only. This corresponds to the observation⁹ that oxiranes are opened by O-nucleophiles rather in an exo- than in endo fashion. Furthermore, in the reaction of compound 11 pathway b affects the 4-O-benzyl- and not the 5-O-benzyl-function.

Diol 13 was prepared as an intermediate in the synthesis of castanospermine⁵. With mesylchloride in pyridine 13 (Entry 5) gave none of the expected di-mesylate. Instead, tetrahydrofuran 14 was formed in 89% yield. Variation of the reaction temperature and base as well as the use of either mesyl anhydride or tosylchloride did not change the outcome of the reaction. Quite obviously, the 1-OMs leaving group has invoked a neighboring group participation of the 4-OBn moiety, resulting in S_N^2 -type cyclization and debenzylation.

Treatment of 15 (Entry 6) with p-TsOH in methanol or with DMAP and p-TsOH in CH₂Cl₂ furnished tetrahydrofuran 16 in 75% yield, whose stereochemistry was secured by single-crystal X-ray analysis¹⁰. Finally, mesylate 17 (Entry 7) cyclized to tetrahydrofuran 18 on stirring with sodium cyanide in hot ethanol/water. This example shows that the debenzylation proceeds even under basic conditions in contrast to the familiar stability of 'normal' O-benzyl protective groups towards bases.

In conclusion, our findings have a threefold consequence: 1. on planning total syntheses which involve S_N2 type processes O-benzyl protective groups in γ -position should be avoided. 2. By virtue of the spontaneous tetrahydofuran formation benzyl ethers are sensitives probes for S_N2 active centers in γ -position. In a certain sense this is an S_N2 analogue to the familiar cyclization of 5-hexenyl radicals¹¹. 3. From the point of synthetic utility the debenzylating cyclization affords an easy access to stereochemically pure highly substituted tetrahydrofurans from readily available acyclic starting materials (Entries 4-7 in Table 1). Tetrahydrofuran subunits are characteristic features of many important natural products (e.g. lasalocid¹², monensin¹³ and citreoviral^{1c}).

Acknowledgment. This work was generously supported by the Schering AG, Berlin-Bergkamen, the Fonds der Chemischen Industrie and the Graduiertenkolleg "Synthese und Strukturaufklärung niedermolekularer Verbindungen". We also thank Dr. B. Kirste and W. Münch for the NOE measurements.

References and Notes.

 (a) Rychnovsky, S. D.; Bartlett, P. A. J. Am. Chem. Soc. 1981, 103, 3963; (b) Williams, D. R.; White, F. H. Tetrahedon Lett. 1985, 26, 2529; (c) Williams, D. R.; White, F. H. Tetrahedon Lett. 1986, 27, 2195; (d) Reitz, A. B.; Nortey, S. O.; Maryanoff, B. E.; Liotta, D.; Monahan, R., III J. Org. Chem. 1987, 52, 4191; (e) Bartlett, P. A. Cyclization Forming Carbon-Heteroatom Bonds. in Asymmetric Syntheses, Morrison, J. D.; Acedemic Press, Orlanda 1984, Vol. 3, pp. 411; (f) Syntheses of Natural Products, Problems of Stereoselectivity, Kočovský, P.; Tureček, F.; Hájíček, J.; Vol I,II CRC Press, Inc. Boca Raton, Florida 1986 and literature cited therein.

- (a) Winstein, S.; Allred, E.; Heck, R.; Glick, R. Tetrahedron 1958, 3, 1; (b) Allred, E. L.; Winstein, S. J. Am. Chem. Soc. 1967, 89, 4012; (c) Novak, E. R.; Tarbell, D. S. J. Am. Chem. Soc. 1967, 89, 73; (d) Perst, H. in Oxonium Ions in Organic Chemistry, Verlag Chemie, Weinheim 1971, pp. 100.
- 3. Allred, E. L.; Winstein, S. J. Am. Chem. Soc. 1967, 89, 4008.
- 4. Kirrmann, A.; Wartski, L. Compt. rend. 1960, 250, 3492.
- 5. Mulzer, J.; Dehmlow, H. submitted.
- (a) Mulzer, J.; Seilz, C.; Luger, P.; Weber, M.; Reutter, W. Liebigs Ann. Chem. 1991, 947.(b) Mulzer, J.; Seilz, C.; Reutter, W. Liebigs Ann. Chem. 1991, 957. (c) Seilz, C. PhD Thesis, FU Berlin 1990.
- 7. Mitsunobu, O. Synthesis 1981,1.
- (a) Camp, F.; Coll, J.; Messeguer, A.; Pujol, F. J. Org. Chem. 1982, 47, 5402; (b) Imuta, M.; Ziffer, H. J. Org. Chem. 1979, 44, 1351.
- 9. Masamune, T.; Ono, M.; Sato, S.; Murai, A. Tetrahedon Lett. 1985, 4, 371.
- 10. Mulzer, J.; Kattner, L.; Strecker, A. R.; Schröder, Ch.; Buschmann, J.; Lehmann, Ch.; Luger, P. J. Am. Chem. Soc. 1991, 113, 4218.
- (a) Griller, D.; Ingold, K. U. Acc. Chem. Res. 1980, 13, 317; (b) Beckwith, A. L. J.; Ingold, K. U. in Rearrangements in Ground and Excited States; de Mayo, P. Ed., Academic Press, New York 1980.
- Nakata, T.; Schmid, G.; Vranesic, B.; Okigawa, M.; Smith-Palmer, T.; Kishi, Y. J. Am. Chem. Soc. 1978, 100, 2933.
- (a) Fukuyama, T.; Wang, C.-L. J.; Kishi, Y.J. Am. Chem. Soc. 1979, 101, 260; (b) Schmid, G.; Fukuyama, T.; Kishi, Y. J. Am. Chem. Soc. 1979, 101, 260.
- 14. ¹H-NMR (250/270 MHz, CDCl₃, TMS): (2): δ 7.66 (m, 4 H), 7.44-7.21 (m, 16 H), 5.93 (ddd, 1 H, J = 6.3, 8.8, 13.8 Hz), 5.29 (dt, 1 H, J = 1.3, 14 Hz), 5.12 (dt, 1 H, J = 1.3, 8.8 Hz), 2 AB systems: $(\delta_{A1} = 4.61, \delta_{B1} = 4.55, \delta_{A2} = 4.57, \delta_{B2} = 4.51, 4 \text{ H}, \text{J} = 10 \text{ Hz}), 4.3 \text{ (dd, 1 H, J} = 3, 6.3 \text{ Hz}), 4.22$ (m, 1 H), 4.10 (dd, 1 H, J = 2, 3 Hz), 4.02 (dd, 1 H, J = 5.5, 8.7 Hz), 3.88 (m, 1 H), 3.86 (dd, 1 H, J = 2, 3 Hz), 4.02 (dd, 1 H, J = 5.5, 8.7 Hz), 3.88 (m, 1 H), 3.86 (dd, 1 H, J = 2, 3 Hz), 4.02 (dd, 1 H, J = 5.5, 8.7 Hz), 3.88 (m, 1 H), 3.86 (dd, 1 H, J = 2, 3 Hz), 4.02 (dd, 1 H, J = 5.5, 8.7 Hz), 3.88 (m, 1 H), 3.86 (dd, 1 H, J = 2, 3 Hz), 4.02 (dd, 1 H, J = 5.5, 8.7 Hz), 3.88 (m, 1 H), 3.86 (dd, 1 H, J = 2, 3 Hz), 4.02 (dd, 1 H, J = 5.5, 8.7 Hz), 3.88 (m, 1 H), 3.86 (dd, 1 H), 3.88 (m, 1 H), 3.86 (dd, 1 H), 3.88 (m, 1 H), 3.88 (mJ = 4.5, 8 Hz, 1.04 (s, 9 H); (5): 7.40-7.20 (m, 10 H), 5.80 (ddd, 1 H, J = 5.5, 10, 17 Hz), 5.34, 5.14 (each dt, 1 H, J = 2, 10.5/17 Hz), AB-system: (δ_A = 4.62, δ_B = 4.54, 2 H, J = 12 Hz), 4.48 (s, 2 H), 4.54-4.46, 4.38-4.28, 3.95-3.86 (each m, 1 H), 3.63 (dd, 1 H, J = 6, 10 Hz), 3.49 (dd, 1 H, J = 5, 10 Hz), 2.22 (ddd, 1 H, J = 6.5, 7.5, 13 Hz), 1.86 (dt, 1 H, J = 5.5, 13 Hz); (10a): 7.52-7.08 (25 H), 2 AB-systems: (δ_A = 4.34, 4.3; δ_B = 4.5, 4.5; 4 H; J = 12 Hz), 3.7, 3.58 (each dd, 1 H, J = 3.75, 10 Hz), 3.54, 3.32 (each dd, 1 H, J = 5, 10 Hz), 2.42 (s, 1H); (10b): 7.5-7.08 (25 H), 2 AB-systems: $(\delta_A = 4.43, 4.36; \delta_B = 4.58, 4.45; 4 \text{ H}; \text{ J} = 12.5 \text{ Hz}), 4.45, 4.18-4.08 \text{ (m, 4 H)}, 3.86, 3.76 \text{ (dd, 1 H, 1)}$ J = 5, 10 Hz), 3.48 (dd, 1 H, J = 5, 10 Hz), 3.28 (dd, 1 H, J = 6, 10 Hz), 2.5 (s, 1H); (12): 7.40-7.24 (m, 10 H), 6.02 (s, 1 H), 2 AB-systems: (δ_A = 4.61, 4.54, δ_B = 4.54, 4.37, 4 H, J = 10.5 Hz), 4.19-4.08 (m, 2 H), 3.95 (dt, 1 H, J = 4.4, 7.8 Hz), 3.79 (ddd, 1 H, J = 4.4, 7.3, 14.2 Hz), 3.60 (dd, 1 H, J = 5.9, 9.8 Hz), 3.54 (dd, 1 H, J = 4.9, 9.5 Hz), 3.35 (ddd, 1 H, J = 3.9, 7.8, 14.2 Hz), 2.18 (ddd, 1 H, J = 4.9, 9.5 Hz), 3.54 (ddd, 1 H, J = 3.9, 7.8, 14.2 Hz), 2.18 (ddd, 1 H, J = 3.9, 7.8, 14.2 Hz), 2.18 (ddd, 1 H, J = 3.9, 7.8, 14.2 Hz), 2.18 (ddd, 1 H, J = 3.9, 7.8, 14.2 Hz), 2.18 (ddd, 1 H, J = 3.9, 7.8, 14.2 Hz), 2.18 (ddd, 1 H, J = 3.9, 7.8, 14.2 Hz), 2.18 (ddd, 1 H, J = 3.9, 7.8, 14.2 Hz), 3.54 (ddd, 1 H, J = 3.9, 7.8, 14.2 Hz), 3.55 (ddd, 1 H, J = 3.9, 14.2 Hz), 3.55 (ddd, 1 H, J = 3.9, 14.2 Hz), 3.55 (dddd, 1 H, J = 3.8, 14.2 Hz), 3.55 (dddd, 1 H, J = 3.8, 14.2 Hz), 1 H, J = 6.4, 7.8, 13.2 Hz), 1.89 (ddd, 1 H, J = 3.9, 6.8, 13.2 Hz), 1.87 (s, 3 H); (14): 7.8 (m, 2 H), 7.64 (m, 2H), 7.26 (mc,15 H), 5.0 (dd, 1 H, J = 2, 8 Hz), 2 AB-systems: (δ_A = 4.6, 4.38; δ_B = 4.38, 4.2; 4 H; J = 11 Hz), 4.46 (s, 2 H), 4.4 (t, 1 H, J = 5.5 Hz), 4.12 (dd, 1 H, J = 4, 9.5 Hz), 4.04 (d, 1 Hz), 4.0 1 H, J = 4 Hz), 3.82 (m, 2 H), 3.68 (m, 3 H), 3.1 (s, 3 H), 2.12 (m, 2 H); (18): 7.44-7.22 (m, 5 H), AB-system: ($\delta_A = 4.53$, $\delta_B = 4.48$, 2 H, J = 13.7 Hz), 4.08-3.92 (m, 2 H), 3.83 (dd, 1 H, J = 3.8, 12.5 Hz), 2.25 (ddd, 1 H, J = 1.3, 7.5, 13 Hz), 1.75-1.35 (m, 3 H), 0.95 (t, 3 H, J = 7.5 Hz).