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Abstract: Benzyl ethers with SN2 active sites 1n y-position undergo spontaneous regio- and stereocontrolled tetrahydrofuran
cyclization with concomitant debenzylation even under mildly acidic or neatral conditions.

Benzyl ethers are considered to be stable O-protective groups over a wide pH-range, even towards mineral
acids at room temperature. In the course of some natural product syntheses we observed however, that
spontaneous debenzylation occurs under mildly acidic or even neutral conditions if a SN2 type leaving group is
present in y-position to the benzyl ether. This is indicated by pathway b in Scheme 1, which competes with the
direct SN2 attack (pathway a). Apart from the familiar iodoetherification! (mercuricyclisation, heteroselenylation
etc.) of y-hydroxy- or y-benzyloxy-alkenes a similar dealkylative tetrahydrofuran cyclization has only been
observed for solvolytic nucleophilic substitution reactions? of 4-methoxy-butyl-1-O-tosylates, reductions with
lithium aluminium hydride3 of 4-methoxy-pentyl- and 5-methoxy-pentyl-1-O-brosylates and for reactions of 4-
alkoxyalcohols with thionylchloride? in low yields.
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For the preparation of some intermediates in the synthesis of the glucosidase inhibitors castanospermine3
and N-acetyl-4-deoxy-mannosamineS the Mitsunobu reaction’ was chosen to introduce the N-function. Treating
1 (Entry 1) with PhaP, phthalimide and diethylazodicarboxylate (DEAD) for 16 h in THF gave a mixture of the
acyclic product 3 and tetrahydrofuran 2 in 45 and 24% yield, respectively. The stereochemistry of 2 was
determined by NOE difference spectroscopy clearly showing a 2,4,5 cis relationship of the hydrogen atoms.
Similar treatment of 4 (Entry 2) gave 43.3% of the expected product 6, 23.8% of the dehydrated substance 7
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Table I.
Entry Educt Products Condltions
1 OBn OBn Bno, ,OBn OBn OBn 1.2 eq PPhg,1 2 eq
R N (—-g + Ro\)\‘/k/\ Phth, 1.2 eq
RO\ & A, 2 I DEAD, THF, -20°C
OBn OH o OBn NPhth S
R = tBuPhySi 1 2 (24%) 3 (45%)
BnO d + BnO ; - ., 2 eq
T (_g\/ \/'\/Y\ DEAD, -20°C — 1t
OH BnOCH2" O NPhth
4 5 (14.3%) 6 (43.3%)
OBn OBn
+ B"O\/'\)\/\ + BnNPhth (16%)
7 (23.8%)
3 OBn OBn OBn OBn TrOCHp a On,+CH,OH (1: -::Clzan:iPBA.
T@CHZW TrOCH; + /
OBn oBn © BnO ©Bn
8 9 (20%) 10a/b (3:2, 43%)
4 \/(ﬁn/o\az‘ OBn acetic acid, th, A,
BnOCH;" "0 “CHNHAc
12 (67%)
5 OBn OBn 10 o8 2.7 eq MsCl, 2.9 eq
1 . g . DMAP ridine
R R R = . PY .
HOCHQ/'\(H/ BnO™ NPhth 0°C = .
OBn CH 0Bn OMs
13 14 (89%)
6 BnO CH20Ms a) MeOH, p-TsOH;
r—/k/H Hy b} CH;Cl, DMAP,
2 i 8 TsOH.
DL ML o
15 16 (75%)
7 OBn OBn Bn NaCN, EtOH / Hy0
w9/1), A,
MsOGHz/k)\/ %\/ s
o
17

18 (78%)
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and 14.3% of 2,3-cis-substituted tetrahydrofuran 5. The simultaneous formation of benzylphthalimide (=NuBn)
in 16% yield further supports the validity of Scheme 1

Tetrahydrofuran cyclizations were observed also if the benzyloxy group was in y-position to an epoxide or
aziridine ring. Oxidation of alkene 8 (Entry 3) with m-chloroperbenzoic acid (m-CPBA) gave a mixture of the
epoxide epimers 9 and hydroxymethyl compounds 10a/b (ratio 3:1) in 20 and 43% yield, respectively. 9 is an
intermediate in the formation of 10a/b from 8. This can be shown by isolating and converting 9 into 10a/b
under the epoxidation conditions applied. Even if buffered systems or other epoxidation conditions8 are used,
10a/b are still the main products. Heating the aziridine derivative 116¢ (Entry 4) in anhydrous acetic acid to
100°C for 1 h led to the N-acetyl protected all-cis substituted tetrahydrofuran 12 in 67% yield. Notably no
tetrahydropyran isomers of 10a/b and 12 were isolated indicating that the Sy2-reaction occurs at the secondary
C-atom of the small ring only. This corresponds to the observation? that oxiranes are opened by O-nucleophiles
rather in an exo- than in endo fashion. Furthermore, in the reaction of compound 11 pathway b affects the 4-O-
benzyl- and not the 5-O-benzyl-function.

Diol 13 was prepared as an intermediate in the synthesis of castanospermine3. With mesylchloride in
pyridine 13 (Entry 5) gave none of the expected di-mesylate. Instead, tetrahydrofuran 14 was formed in 89%
yield. Variation of the reaction temperature and base as well as the use of either mesyl anhydride or tosylchloride
did not change the outcome of the reaction. Quite obviously, the 1-OMs leaving group has invoked a
neighboring group participation of the 4-OBn moiety, resulting in SN2-type cyclization and debenzylation.

Treatment of 15 (Entry 6) with p-TsOH 1n methanol or with DMAP and p-TsOH in CH2Cly furmshed
tetrahydrofuran 16 in 75% yield, whose stereochemistry was secured by single-crystal X-ray analysis!O.
Finally, mesylate 17 (Entry 7) cyclized to tetrahydrofuran 18 on stirring with sodium cyanide in hot
ethanol/water. This example shows that the debenzylation proceeds even under basic conditions in contrast to
the famuliar stability of 'normal’ O-benzyl protective groups towards bases.

In conclusion, our findings have a threefold consequence: 1. on planning total syntheses which involve
SN2 type processes O-benzyl protective groups in y-position should be avoided. 2. By virtue of the spontaneous
tetrahydofuran formation benzyl ethers are sensitives probes for SN2 active centers in - position. In a certain
sense this is an SN2 analogue to the familiar cyclization of 5-hexenyl radicals!l. 3. From the point of synthetic
utility the debenzylating cyclization affords an easy access to stereochemically pure highly substituted
tetrahydrofurans from readily available acyclic starting materials (Entries 4-7 in Tabie 1). Tetrahydrofuran
subunits are characteristic features of many important natural products (e.g. lasalocid!2, monensinl3 and
citreovirallc).
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1H-NMR (250/270 MHz, CDCl3, TMS): (2): 8 7.66 (m, 4 H), 7.44-7.21 (m, 16 H), 5.93 (ddd, 1 H,
J=6.3,8.8,13.8 Hz), 529 (dt, 1 H,J = 1.3, 14 Hz), 5.12 (dt, 1 H, J = 1.3, 8.8 Hz), 2 AB systems:
(8a1 = 4.61, dp1 = 4.55, 842 = 4.57,8g2 = 4.51,4 H,J = 10 Hz), 43 (dd, 1 H,J = 3, 6.3 Hz), 422
(m, 1 H),4.10(dd, 1 H,J=2,3 Hz),4.02 (dd, 1 H,J = 5.5, 8.7 Hz), 3.88 (m, 1 H), 3.86 (dd, 1 H,
J = 4.5, 8 Hz), 1.04 (5, 9 H); (5): 7.40-7.20 (m, 10 H), 5.80 (ddd, 1 H, J = 5.5, 10, 17 Hz), 5.34, 5.14
(each dt, 1 H, J = 2, 10.5/17 Hz), AB-system: (8o = 4.62, dg = 4.54, 2 H, ] = 12 Hz), 448 (s, 2 H),
4.54-4.46, 4.38-4.28, 3.95-3.86 (each m, 1 H), 3.63 (dd, 1 H,J =6, 10 Hz), 3.49 (dd, 1 H, T = 5,
10 Hz), 2.22 (ddd, 1 H,J = 6.5, 7.5, 13 Hz), 1.86 (dt, 1 H, J = 5.5, 13 Hz); (10a): 7.52-7.08 (25 H),
2 AB-systems: (85 = 4.34, 4.3; 8g = 4.5, 4.5; 4 H; J = 12 Hz), 3.7, 3.58 (each dd, 1 H, J = 3.75,
10 Hz), 3.54, 3.32 (each dd, 1 H, J = 5, 10 Hz), 2.42 (s, 1H); (10b): 7.5-7.08 (25 H), 2 AB-systems:
(84 = 4.43, 4.36; 3 = 4.58, 4.45; 4 H; T = 12.5 Hz), 4.45, 4.18-4.08 (m, 4 H), 3.86, 3.76 (dd, 1 H,
J=35,10Hz2), 3.48 (dd, 1 H, I =5, 10 Hz), 3.28 (dd, 1 H, J = 6, 10 Hz), 2.5 (s, 1H); (12): 7.40-7.24
(m, 10 H), 6.02 (s, 1 H), 2 AB-systems: (85 = 4.61, 4.54, &p =4.54, 4.37, 4 H, ] = 10.5 Hz), 4.19-
408 (m, 2 H), 3.95 (dt, 1 H, ] = 4.4, 7.8 Hz), 3.79 (ddd, 1 H, J = 4.4, 7.3, 14.2 Hz), 3.60 (dd, 1 H,
J=35.9,98 Hz), 354 (dd, 1 H, J = 4.9, 9.5 Hz), 3.35 (ddd, 1 H, J = 3.9, 7.8, 14.2 Hz), 2.18 (ddd,
1H,J=64,78, 13.2 Hz), 1.89 (ddd, 1 H, J = 3.9, 6.8, 13.2 Hz),1.87 (s, 3 H); (14): 7.8 (m, 2 H),
7.64 (m, 2H), 7.26 (mc,15 H), 5.0 (dd, 1 H, J = 2, 8 Hz), 2 AB-systems: (55 = 4.6, 4.38; 5 = 4.38,
42;4H;J=11Hz),446 (s, 2H), 44 (t, 1 H, ] = 5.5 Hz), 4.12 (dd, 1 H, J = 4, 9.5 Hz), 4.04 (d,
1H,J=4Hz), 3.82 (m, 2 H), 3.68 (m, 3 H), 3.1 (5, 3 H), 2.12 (m, 2 H); (18): 7.44-7.22 (m, 5 H),
AB-system: (84 = 4.53, 8p = 4.48, 2 H, J = 13.7 Hz), 4.08-3.92 (m, 2 H), 3.83 (dd, 1 H, J = 3.8,
12.5 Hz), 225 (ddd, 1 H, T = 1.3, 7.5, 13 Hz), 1.75-1.35 (m, 3 H), 0.95 (t, 3 H, J = 7.5 Hz).
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